52 research outputs found

    Valproate Used in Women of Childbearing Age with Epilepsy

    Get PDF
    Valproate is one of the oldest known anti-epileptic drugs (AED) in practice which was discovered in 1881 and later in 1962 was approved for treating epilepsy. It is indicated in most of the seizure types including generalized onset (motor, non-motor and myoclonic), focal onset, unknown onset and unclassified. Valproate has other indications in migraine prophylaxis, and bipolar disorder

    Unmanned aerial vehicles enabled IoT platform for disaster management

    Get PDF
    © 2019 by the authors. Efficient and reliable systems are required to detect and monitor disasters such as wildfires as well as to notify the people in the disaster-affected areas. Internet of Things (IoT) is the key paradigm that can address the multitude problems related to disaster management. In addition, an unmanned aerial vehicles (UAVs)-enabled IoT platform connected via cellular network can further enhance the robustness of the disaster management system. The UAV-enabled IoT platform is based on three main research areas: (i) ground IoT network; (ii) communication technologies for ground and aerial connectivity; and (iii) data analytics. In this paper, we provide a holistic view of a UAVs-enabled IoT platform which can provide ubiquitous connectivity to both aerial and ground users in challenging environments such as wildfire management. We then highlight key challenges for the design of an efficient and reliable IoT platform. We detail a case study targeting the design of an efficient ground IoT network that can detect and monitor fire and send notifications to people using named data networking (NDN) architecture. The use of NDN architecture in a sensor network for IoT integrates pull-based communication to enable reliable and efficient message dissemination in the network and to notify the users as soon as possible in case of disastrous situations. The results of the case study show the enormous impact on the performance of IoT platform for wildfire management. Lastly, we draw the conclusion and outline future research directions in this field

    Testing generalized neutrino interactions with PTOLEMY

    Full text link
    There are several unanswered questions regarding neutrinos which pave the way for physics beyond the standard model (SM) of particle physics. Generalized interactions of neutrinos provide a way to characterize these effects in a manner which is even more general than the oft-studied non-standard neutrino interactions. These interactions are described by higher dimensional operators maintaining the SM gauge symmetries. On the other hand cosmic neutrino background, although yet to be detected directly, is a robust prediction of the SM and the standard cosmology. We perform a global analysis of the relevant generalized neutrino interactions which are expressly relevant for the proposed cosmic neutrino detector PTOLEMY. The electron spectrum due to the capture of cosmic neutrinos on radioactive tritium gets modified due to the presence of these generalized interactions. We also show how the differential electron spectrum is sensitive to the finite experimental resolution, mass of the lightest neutrino eigenstate, the strength of these interactions and the ordering of neutrino mass.Comment: 22 pages, 5 figures, 5 table

    A holonic workforce allocation model for labour-intensive manufacturing

    Get PDF
    This paper presents a new model for workforce allocation in labour-intensive industries. In such industries where production processes mostly include manual assembly operations, performance is highly influenced by the availability of skilled workers. Sudden unavailability of skilled labour has significant adverse effects on production. Furthermore, as competition intensifies, production becomes more sensitive to changing market demands. Such disturbances can be attenuated by introducing flexibility in the production planning process. Workforce allocation plays a significant role in the planning process. Thus, this paper focuses on workforce allocation, and a support system is developed from the concepts of holonic manufacturing systems and PROSA reference architecture. The system was designed in unified modelling language and was tested using an object-oriented software developed in C++. The use of the holonic methodology to develop the system has helped to identify the shortfalls of the conventional method adopted in industry and develop algorithms to improve the workforce allocation process. The proposed system was simulated using production data from a computer manufacturer case study. The paper then presents a comparison of the factory’s conventional method of workforce allocation with the proposed holonic workforce allocation system. The results suggest an improved manufacturing throughput performance

    Learning paradigms for communication and computing technologies in IoT systems

    Get PDF
    © 2020 Elsevier B.V. Wireless communication and computation technologies are becoming increasingly complex and dynamic due to the sophisticated and ubiquitous Internet of things (IoT) applications. Therefore, future wireless networks and computation solutions must be able to handle these challenges and dynamic user requirements for the success of IoT systems. Recently, learning strategies (particularly deep learning and reinforcement learning) are explored immensely to deal with the complexity and dynamic nature of communication and computation technologies for IoT systems, mainly because of their power to predict and efficient data analysis. Learning strategies can significantly enhance the performance of IoT systems at different stages, including at IoT node level, local communication, long-range communication, edge gateway, cloud platform, and corporate data centers. This paper presents a comprehensive overview of learning strategies for IoT systems. We categorize learning paradigms for communication and computing technologies in IoT systems into reinforcement learning, Bayesian algorithms, stochastic learning, and miscellaneous. We then present research in IoT with the integration of learning strategies from the optimization perspective where the optimization objectives are categorized into maximization and minimization along with corresponding applications. Learning strategies are discussed to illustrate how these strategies can enhance the performance of IoT applications. We also identify the key performance indicators (KPIs) used to evaluate the performance of IoT systems and discuss learning algorithms for these KPIs. Lastly, we provide future research directions to further enhance IoT systems using learning strategie

    Agent-based distributed manufacturing scheduling: an ontological approach

    Get PDF
    The purpose of this paper is the need for self-sequencing operation plans in autonomous agents. These allow resolution of combinatorial optimisation of a global schedule, which consists of the fixed process plan jobs and which requires operations offered by manufacturers. The proposed agent-based approach was adapted from the bio-inspired metaheuristic- particle swarm optimisation (PSO), where agents move towards the schedule with the best global makespan. The research has achieved a novel ontology-based optimisation algorithm to allow agents to schedule operations whilst cutting down on the duration of the computational analysis, as well as improving the performance extensibility amongst others. The novelty of the research is evidenced in the development of a synchronised data sharing system allowing better decision-making resources with intrinsic manufacturing intelligence. The multi-agent platform is built upon the Java Agent Development Environment (JADE) framework. The operation research case studies were used as benchmarks for the evaluation of the proposed model. The presented approach not only showed a practical use case of a decentralised manufacturing system, but also demonstrated near optimal makespans compared to the operational research benchmarks

    A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks

    Get PDF
    The diverse service requirements coming with the advent of sophisticated applications as well as a large number of connected devices demand for revolutionary changes in the traditional distributed radio access network (RAN). To this end, Cloud-RAN (CRAN) is considered as an important paradigm to enhance the performance of the upcoming fifth generation (5G) and beyond wireless networks in terms of capacity, latency, and connectivity to a large number of devices. Out of several potential enablers, efficient resource allocation can mitigate various challenges related to user assignment, power allocation, and spectrum management in a CRAN, and is the focus of this paper. Herein, we provide a comprehensive review of resource allocation schemes in a CRAN along with a detailed optimization taxonomy on various aspects of resource allocation. More importantly, we identity and discuss the key elements for efficient resource allocation and management in CRAN, namely: user assignment, remote radio heads (RRH) selection, throughput maximization, spectrum management, network utility, and power allocation. Furthermore, we present emerging use-cases including heterogeneous CRAN, millimeter-wave CRAN, virtualized CRAN, Non- Orthogonal Multiple Access (NoMA)-based CRAN and fullduplex enabled CRAN to illustrate how their performance can be enhanced by adopting CRAN technology. We then classify and discuss objectives and constraints involved in CRAN-based 5G and beyond networks. Moreover, a detailed taxonomy of optimization methods and solution approaches with different objectives is presented and discussed. Finally, we conclude the paper with several open research issues and future directions

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
    corecore